

Animation: Volvo CE

Shaping the Future of Built Environment through BIM, Berlin 8.5.2023

Autonomous Work Machines are changing the Infrastructure Construction Site

Tanja Kolli, Annika Kemppainen, Rauno Heikkilä, University of Oulu UNIVERSITY of O

Infra Construction Sites

- Long work sites, typically 10-100 km, or over 1000 km (E39, Norway, 2015-2035)
- The number of working machines and vehicles are varied from tens to hundreds of
- Several construction tasks, such as soil bed cutting, rock cutting and blasting, construction of structural layers, asphalt spreading, compaction,...
- → Lots of material movements
- → Continuous interaction with traffic
- Very costly, e.g. motor way 3-5 MEUR/km
- Duration of project 2-3 years
- Relatively high construction accuracy is required!

Open Infra BIM, Machine Control Model

 Common InfraBIM Requirements YIV2021, Infra BIM Classification, Inframodel

 Preparation Instructions for as-planned models of earth works (machine control models)

- Content of machine control model
- Modelled terrain break lines
- Naming and coding of terrain break lines and surfaces
- Continuity of terrain break lines and surfaces
- Geometric accuracy of terrain break material
- Regularity of triangulation network
- Checking of models, model report, naming of as-planned model files, data exchange format

Levels of Automation for Infra Construction Machinery (Heikkilä et al., ISARC 2019)

Level	Name	Description of the activity
0	No automation	Human operates machine
1	Remote control	Human operates remotely machine
2	Guidance	Operator supported, the operator drives
		manually machine and blade using
		computer user-interface to BIM model
3	Coordinated	Tip control, the operator moves the
		machine and manages the tool blade
		manually with the help of inverse kinematics
		Controlling, the operator moves the work
4	Partial automation	machine and manages
		the part of the tool blade manually while the
		system drives automatically some
		of the movements
5	Autonomous	Machine can operate without human driver
		Autonomous operation of work machines,
6	Autonomous machine	interactivity and
	swarm	collaboration of working machines

Smart Excavator, Control Methods Available

- I) Human Manual
- 2) Guidance
- 3) Remote
- 4) Teach-in
- 5) Autonomous

Remote – Our Record 400 km

Model based Autonomous Control

Autonomous Swarm Demo at PWRI 21.4.2023

Autonomous Low-Emission Swarm of Infra Construction Machinery

Founding by Business Finland 5 Meur, 2022-2024

- University of Oulu, joint research project with a group of key industrial players:
 - Novatron (3D Machine Control), Satel (Wireless Communication), Destia (Contractor)
 - Noptel (LIDAR), Sisu Truck (Finnish Truck manufacturer), Sensible4 (Autonomous vehicles and trucks?), GIM Robotics (Adaptive sensing and navigation), Nokia (5G), Sandvik (Mining Automation, MIM)
- The work machine swarm: Excavator, bulldozer, compaction machine, dump truck

Picture: Concept-X Vision, Doosan

Conclusion

- The more automation, the fewer humans on sites
- Semi-autonomous systems are more and more coming to infra construction sites
- New type of remote control centers will arrive, especially for large construction projects
- Wireless communication important
- Trained people to use automation on site will be needed
- Hopefully automation gives a possibility to improve the productivity in infra construction works and sector

Thank you!

Contact:
Rauno Heikkilä,
University of Oulu, Finland
rauno.heikkila@oulu.fi
+358 40 538 5840

BIM-seminar questionary:

Diploma worker B.Sc (Tech) Annika Kemppainen

