

Autonomous SWARM at PWRI 21.4.2023

Finnish-German BIM Workshop, Berlin 5.9.2023

Improving the Productivity of Infrastructure Construction by Open Infra BIM based Automation

Rauno Heikkilä, University of Oulu, Finland

Rauno Heikkilä

- University of Oulu, Finland
- Professor, Dr. Tech, Civil Engineering Research Unit
- Head of Digitalized Construction and Mining Research Team
- Major research interests cover information modelling (BIM in Construction, Mining Information Modelling in Mining), automation and robotics in the Construction of Roads, Railways, Fairways, Bridges and Buildings as well as in Mining

Introduction

- Productivity of infrastructure construction = Output/Input of the operational process
- General possibilities to improve productivity are:
 - Maximize output from the design and construction process
 - Minimize Input to the design and construction process
- To mazimize the output we have to
 - Use better technologies such as Open Infra BIM & Automation
 - Develop new innovative solutions for products & services
 - ...
- To minimize the input, we have to
 - Improve the working efficiency, shorten execution time,..
 - Decrease mistakes and errors,...
 - Decrease waste such us waiting times for materials, information and decisions, rework, incorrent processing,...

Features of Infra Construction Sites

- Long sites, typically 10-100 km, or over 1000 km (E39, Norway, 2015-2035)
- Tens or hundreds of working machines and vehicles
- Works of soil bed cutting, rock cutting and blasting, construction of structural layers, asphalt spreading, compaction,...
- Lots of material movements
- Continuous interaction with traffic
- Very costly, typically tens or hundreds of MEUR/project (motor way 3-5 MEUR/km), duration 2-3 years
- Relatively very high accuracy of construction needed

Infra BIM -Modeling Guidelines 2021

Infra Structures -Numbering and Naming

olt d

088 0

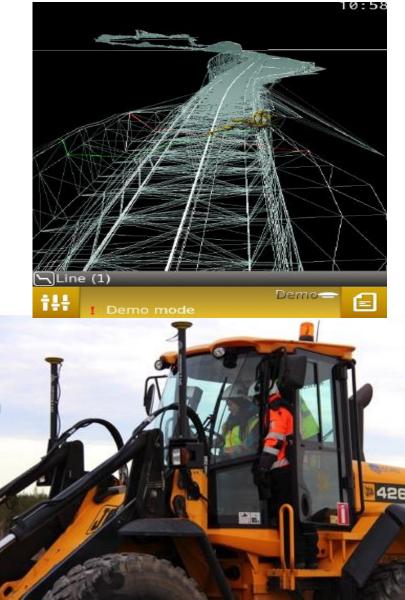
Inframodel - Open Information Exchange

Infra BIM, Machine Control Model, Inframodel

- Common InfraBIM Requirements YIV2021, Preparation Instructions for asplanned models of earth works
 (machine control models)
 - (machine control models)
 - Content of machine control model
 - Modelled terrain break lines
 - Naming and coding of terrain break lines and surfaces

7800

-7641


- Continuity of terrain break lines and surfaces
- Geometric accuracy of terrain break material
- Regularity of triangulation network
- Checking of models, model report, naming of as-planned model files, data exchange format

Development from Inframodel to ISO 15143 "ISO LandXML"

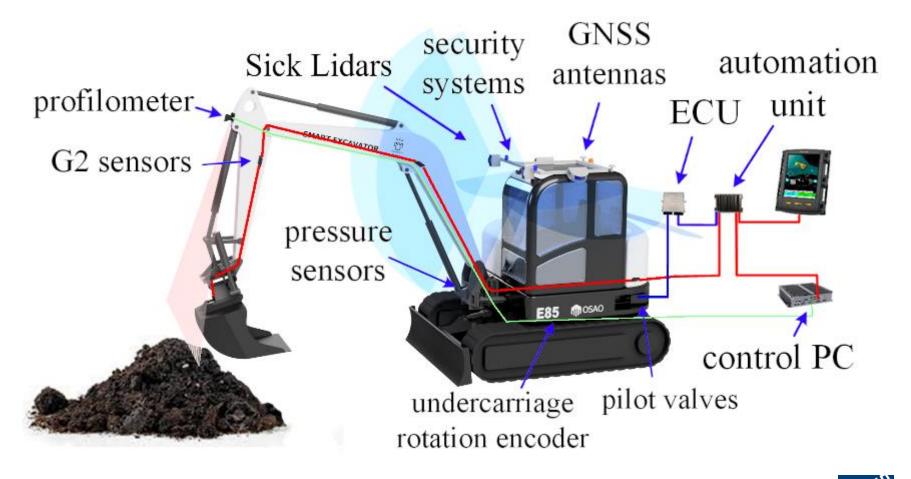
- ISO/TS 15143-3:2020 Earth-moving machinery and mobile road construction machinery — Worksite data exchange — Part 3: Telematics data, Published (https://www.iso.org/standard/76394.h tml)
- ISO/AWI TS 15143-4.2 Earth-moving machinery and mobile road construction machinery — Worksite data exchange — Part 4: Worksite topographical data
- In Japan, Opera research project ongoing is developing an Open Solution for "SWARM Control"

Automated 3-D Machine Guidance and Control

- Integrates Infra BIM (machine control model) to construction control
- Machine control model is processed from design model
- 3-D positioning for machine (blade) movements, RTKGNSS or Robotic Total Station
- Movements of different joints and units are real-time calculated (inverse solution)
- Blade deviation from machine control model is real-time calculated and shown (*automated guidance*)
- Blade deviation is automatically corrected using suitable dynamics (*automated control*)

Levels of Automation for Infra Construction Machinery

Level Name	Description of the activity
0 No automation	Human operates machine
1 Remote control	Human operates remotely machine
2 Guidance	Operator supported, the operator drives
	manually machine and blade using
	computer user-interface to BIM model
3 Coordinated	Tip control, the operator moves the
	machine and manages the tool blade
	manually with the help of inverse kinematics
	Controlling, the operator moves the work
4 Partial automation	machine and manages
	the part of the tool blade manually while the
	system drives automatically some
	of the movements
5 Autonomous	Machine can operate without human driver
	Autonomous operation of work machines,
6 Autonomous machine	interactivity and
swarm	collaboration of working machines



OULUN YEIOPISTC

UNIVERSITY of O

The Smart Excavator (Bobcat E85) of University of Oulu, 2023

Smart Excavator, Control Methods Available

- 1) Human Manual
- 2) Guidance
- 3) Remote
- 4) Teach-in
- 5) Autonomous

Remote

RÂJA

Remote Control Jyväskylä-Ouluzone (400 km, 26.10.2022)

MART EXCAVATOR

R-O

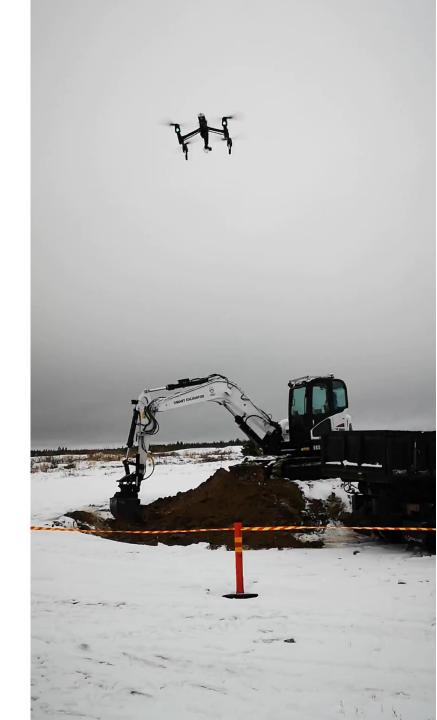
Solutions **ne Future**.

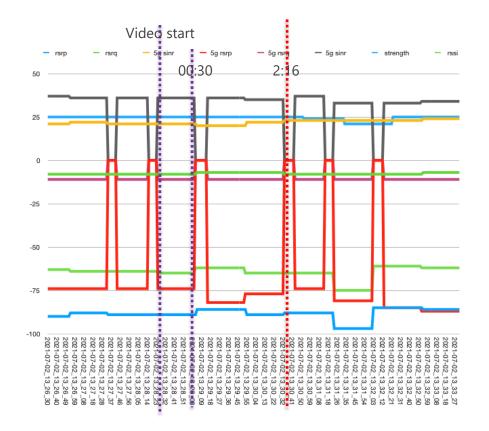
B-372

Doka Robo, Kanamoto, Japan

- Remote control system for excavators
- Human operator operates the machine remotely
- Human robot real-time repeats joystick movements in the excavator's cab
- No machine control model implementation yet done
- Used through rental services for years in Japan

Unmanned - Model based Autonomous Control





Smart Excavator – Drone Cooperation

- Measurement of DTM
- Measuring as-built surface
- Safety monitoring
- Capturing video for remote control
- Creating wireless communication network

Wireless Communication for SWARM – Experiments with 4G, 5G, Rajant, Starlink,...

OULUN YLIOPISTC

UNIVERSITY of O

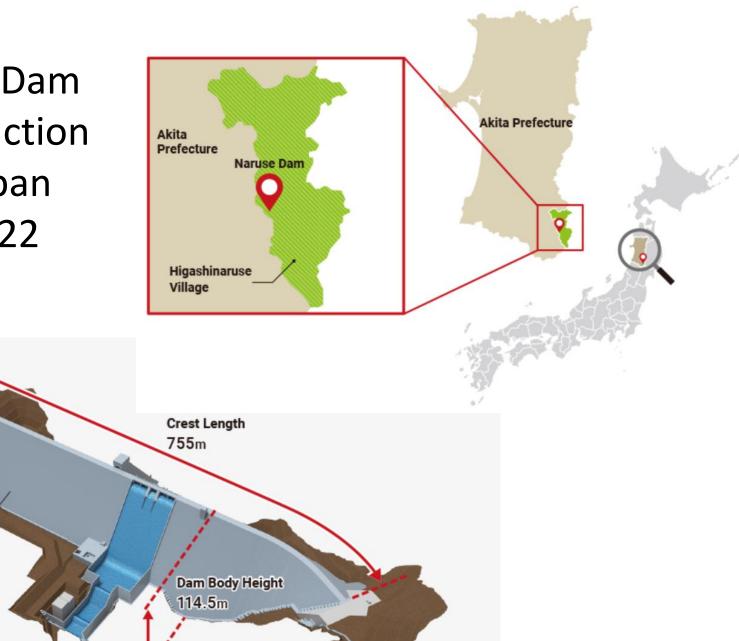
Case ETH Zurich & Gravis Robotics, Prof. Marco Hutter, 2023

Japanese SWARM Automation Systems

Kajima Co.

OULUN YLIOPISTO

Autonomous Machine Swarm – Case Kajima, Japan


https://www.kajima.co.jp/tech/c_movies/movies/dam_21002 /index.html

Automatic construction machines work autonomously responding to instructions from a tablet device

© KAJIMA CORPORATIO

Naruse Dam Construction Site, Japan 13.9.2022

Dam Body Volume 4.85 million m³

Naruse Dam Construction Site, Kajima, 13.9.2022

Kajima Swarm Experience in Dam Construction

- Naruse Dam Construction Site, a project incorporating the latest construction methods
- A⁴CSEL Work speeded up by 32%
- A⁴CSEL 83% fewer people working on the site

Nammah Dam Construction Site, Case Taisei

T-iCraft System Configuration

1.4

Autonomous Machine Swarm – Case Taisei

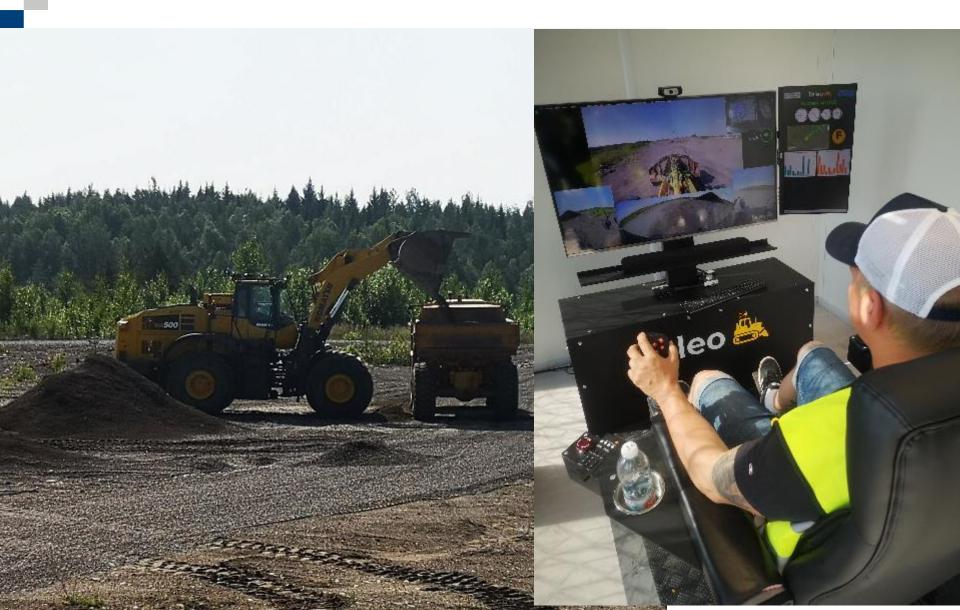
Why cooperative control is necessary ?

Take "earthworks" for example. Loading **Automatic operation** Not sure when to move? Excavator Crawler Carrier ②Transportation Crawler Carrier ③Bulldozing Bulldozer ④Rolling

UNIVERSITY of OULU OULUN YLIOPISTO

Con-Expo 14.-19.3.2023 Las Vegas, USA – the Emergence of Semi-Autonomous Machines (Teleo, Palo Alto, CA):

- "Today we are excited to announce deals with construction customers John Aarts Group, Teichert, and Tomahawk Construction for remote-operated wheel loaders, bulldozers, and dump trucks, respectively. In addition, we are expanding globally through a new dealer partner network spanning across the United States, Europe, and Canada with partners Dobbs Positioning Solutions, RDO Equipment Co., SMS Equipment Inc. and SR-O Technology.
- Construction and mining work is skilled, physically demanding and often dangerous. According to the Associated General Contractors of America, 91% of construction firms are having a hard time finding workers to hire, driving up costs and project delays. To address this issue, we are introducing an incremental approach to autonomy with Teleo Supervised Autonomy technology, which combines remote and autonomous operations of any make and model of heavy construction equipment. A key benefit is that one operator can control multiple machines from the comfort of a command center.
- Full autonomy, which doesn't require any human intervention, is still many years away for the construction industry and many others. ERSITY of OULU



One Operator, Two Machines (Teleo, US)

Teleo at Ouluzone+ 28.6.2023

Supervised Autonomy in Ouluzone 28.6.2023 (Teleo, University of Oulu)

Supervised Autonomy showcase at OULUZONE

Autonomous Low-Emission Swarm of Infra Construction Machinery

- University of Oulu, Joint research project with a group of key industrial players:
 - Novatron (3D Machine Control), Satel (Wireless Communication), Destia (Contractor)
 - Noptel (LIDAR), Sisu Truck (Finnish Truck, manufacturer), Sensible4 (Autonomous vehicles and trucks?), GIM Robotics (Adaptive sensing and navigation), Nokia (5G), Sandvik (Mining Automation, MIM)
- 5 MEUR, 2022-2024
- The work machine swarm: Excavator, bulldozer, compaction machine, dump truck

Picture: Concept-X Vision, Doosan

Driving

Truck dumping

Analyze the worksite and optimize operations

Y.Center

Swarm Oulu - Machines

Developing Ouluzone++ www.ouluzoneplus.com

ovable RF 2023

KOKKO

Improvement of Productivity? Benefits of Open Infra BIM in 2022

- Highway Design and Construction project Vt4 Kirri Tikkakoski (2019-2022):
 - The motor way was opened to traffic 8 months ahead of the schedule
 - The rapid progress of the work was due to new ways of working in design, construction and quality control
 - The **time saving** in design was about 20-22 weeks
 - All the machines were equipped with automatic machine control systems
 - Real-time quality control was seen to been preventing potential faults at an early stage during construction

Heikkilä, R. & Kolli, T. & Rauhala, T. (2022) Benefits of Open InfraBIM – Finland Experience. ISARC 2022.

Findings of the Productivity Workshop 27.4.2023 (University of Oulu, Finnish Transport Infrastructure Agency)

- BIM-based method has made it possible
 - Better forecasting
 - Clear outline of the plans
 - Enables doing the right thing at once
 - Overlaps are easy to identify
- These have a clear connection to productivity
- At the industry level, measuring productivity development is challenging
- Contractors have no need/obligation to disclose contributions (inputs))
- Determining the outputs is also challenging due to the increased requirements UNIVERSITY of OULU

Conclusion

- Remarkable benefits based on Open InfraBIM and Automation observed from Infra design and construction projects in Finland, Automation offers more and more latent possibilities
- The common statistical measures used do not show and follow accurately the productivity development in infra sector
- New type of measuring methods, measures and units will be needed to follow productivity development
- The key players of the infra construction industry needs to be motivated to the continuous productivity improvement
- The next R&D "productivity improvement" project under planning at the moment UNIVERSITY of OU

Thank you!

Rauno Heikkilä University of Oulu, Finland <u>rauno.heikkila@oulu.</u> <u>fi</u> +358 40 538 5840

Digital Twins - Nokia RXRM System in 5G

